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Thermocapillary migration of bubbles:
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The effect of a weak convective heat transfer on the thermocapillary interaction of
two bubbles migrating in an externally imposed temperature gradient is examined.
It is shown that, for short and moderate separation distances, the corrections to
the individual migration velocities of the bubbles are of O(Pe), where Pe is Péclet
number. For separation distances larger than O(Pe−1/2) the correction is of O(Pe2)
as previously found for an isolated drop. The perturbations to the bubble velocities
have opposite signs: the motion of the leading bubble is enhanced while the motion
of the trailing one is retarded. A newly found feature is that equal-sized bubbles,
which otherwise would move with equal velocities, acquire a relative motion apart
from each other under the influence of convection. For slightly unequal bubbles there
are three different regimes of large-time asymptotic behaviour: attraction up to the
collision, infinite growth of the separation distance, and a steady migration with equal
velocities, the steady motion separation distance being a function of the parameters
of the problem. Sufficient conditions for the realization of each regime are given in
terms of the Péclet number, initial separation and radii ratio.

1. Introduction
The hydrodynamic interaction between drops, bubbles and particles is very impor-

tant in various multiphase flows. Analyses of this interaction acquire qualitatively
new features caused by the phenomenon of thermocapillarity, i.e. by the dependence
of the interfacial tension on temperature. Thermal gradients that appear in the system
in the presence of heat transfer induce surface tension gradients that, in turn, generate
thermocapillary flow in the surrounding fluid. This flow can drastically change the
motion of fluid particles in multiphase systems. Thermocapillary-induced migration of
drops and bubbles under an externally imposed thermal gradient in the surrounding
fluid was first described by Young, Goldstein & Block (1959). It has since attracted
wide attention and, in particular in recent years, it has become relevant in applications
to materials processing under conditions of micro-gravity. A review of the subject is
given by Subramanian (1992) and by Wozniak, Siekmann & Srulijes (1988).

Most of the theoretical studies of the effect were conducted under the assumption
of negligible inertia and convective transport, i.e. negligibly small Reynolds, Re,
and Péclet, Pe, numbers. The Péclet number in thermocapillary motion is often
addressed through the Marangoni number. Within this approximation of Stokes flow
and a harmonic temperature field, the problem of the thermocapillary migration of
two spherical drops is similar to classical problems describing their hydrodynamic
interaction (Stimson & Jeffery 1926; Happel & Brenner 1965; Haber, Hetsroni &
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Solan 1973). In this limit the motion is quasi-stationary and the velocities of two
drops are found as functions of the instantaneous geometric configuration, drop
radius ratio and the material properties of the fluids. The axisymmetric case of
two bubbles moving along their line of centres in a thermal gradient was treated
by Meyyappan, Wilcox & Subramanian (1983), who found that equal-sized bubbles
exert no influence on each other’s velocity for all separation distances. These findings
were later confirmed analytically by Feuillebois (1989). Anderson (1985) obtained
the same result in the more general case of a thermocapillary migration of two
arbitrarily oriented bubbles with respect to an applied temperature gradient using
the approximate method of reflections, while Acrivos, Jeffery & Saville (1990) showed
that this result prevails when considering a monodisperse collection of interacting
bubbles. This exact cancellation of the interaction effects is likely to be a consequence
of a high symmetry of the linear problem, where the disturbances due to the thermal
and hydrodynamic fields neutralize each other.

In the nonlinear limit, where the effect of convective transport or inertia becomes
non-negligible, analytical results were reported mainly for the case of thermocapillary
migration of an isolated particle. The influence of a weak convective transport, i.e.
small but non-zero Péclet number, on the thermocapillary migration of a single particle
was studied by Subramanian (1981) for the case of a bubble, and by Subramanian
(1983) for the case of a drop. The effects of inertia and interface deformations
were neglected, i.e. the Reynolds and capillary, Ca, numbers were presumed to be
zero. Bratukhin (1975, 1977) examined these effects, assuming that they are of the
same order of magnitude, with Pe, Re and Ca being proportional to one controlling
parameter, the Marangoni number. The singular perturbations analysis showed that
the corrections to the temperature and velocity fields are of O(Pe), but the correction
to the migration velocity is of O(Pe2). Balasubramaniam & Subramanian (1996)
considered the steady-state thermocapillary migration of a single bubble at large Pe
and two limiting cases of Re = 0 and Re → ∞ and showed that for both limiting
cases the migration velocity approaches a constant value as Pe→∞.

In experiments there is always a non-negligible convective transport and it is
particularly interesting to know if this remarkable effect of cancellation, mentioned
above for equal-sized bubbles, extends to a weakly nonlinear limit of small Pe.
It is predicted that this effect does not hold and the convective transport around
the interacting bubbles may lead to non-symmetric contributions to their individual
velocities resulting in relative motion.

The literature on the convective transport effect for interacting drops and bubbles
is limited. We have recently analysed the problem of the spontaneous migration of
two drops induced by interphase surfactant (heat) transfer, in the absence of an
externally imposed gradient, for negligible Re and finite, but small Pe (Lavrenteva,
Leshansky & Nir 1999). It was shown that the correction to the migration velocity
of a drop at moderate initial separation distances is of order

√
Pe. Balasubramaniam

& Subramanian (1999) have studied the migration of two bubbles in a uniform
temperature gradient and have shown that, in this case, the interaction of the trailing
bubble with the thermal wake of the leading one substantially retards its migration
speed. No analytical studies of the convective transport effect on the thermocapillary
migration of interacting particles in an external gradient field at small Pe and Re
have been reported so far.

In the present paper we extended the analysis of Subramanian (1981) to the case of
two bubbles interacting in an external temperature gradient. For moderate separation
distances the correction to the quasi-stationary velocities of the bubbles is found to
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Figure 1. Two bubbles migrating in a temperature gradient.

be proportional to Pe. For the asymptotic case of large initial separation distance
between the bubbles, Z � Pe−1/2, the leading-order correction term is expected to be
of order Pe2 as in the case of a single bubble (Subramanian 1981). The results of the
present paper show that the convective effect in the case of thermocapillary motion
of two bubbles in an external temperature gradient is more pronounced than that in
the case of single drop (bubble) migration and less pronounced than in the case of
spontaneous drop interaction caused by interphase mass (heat) transport.

Our analysis predicts that a weak convective transport results in a relative motion
of equal-sized bubbles apart from each other and qualitatively changes the interaction
pattern in the case of unequal bubbles. When the leading bubble is smaller than the
trailing one and the radii ratio is large enough, the separation distance decreases up
to the collision of the bubbles as would happen were conduction is the only transport
mechanism. In contrast to this, if the radii ratio is close enough to unity, the motion
tends with time to a steady asymptotic state, when the bubbles translate with equal
constant velocity, the separation distance being a function of Péclet number and radii
ratio.

2. Statement of the problem
Consider two bubbles of radii a1 and a2 submerged in an unbounded viscous

Newtonian fluid which is quiescent at infinity and has a constant uniform thermal
gradient, T = A · x, far away from the bubbles, as shown in figure 1. The thermal
diffusivity, density and the viscosity of the liquid are χo, ρo and ηo, respectively. Gravity
and buoyancy forces are absent. The viscosity, density and thermal conductivity of the
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gas phase are assumed negligible compared to the same properties in the liquid. Thus,
only the governing equations for the liquid need to be considered. It is supposed that
the magnitude of A is small and the changes in temperature do not affect any physical
properties of the liquid in the bulk and at the interface, except for the interfacial
tension which varies linearly with temperature: σ = σ0 − σ1T , where σ0 and σ1 are
positive constants.

The following scaling is chosen: the radius of the leading bubble, a1, for length,
u = η−1

o σ1Aa1 for velocity, a1/u for time, σ1A for pressure and Aa1 for temperature. Let
x = (x1, x2, x3) be a dimensionless radius vector to a point in the laboratory coordinate
system with some chosen origin. In this coordinate system let A = (0, 0, A). Thus, the
dimensionless velocity field v = (v1, v2, v3), the pressure p and the temperature field Θ
are governed by the following equations:

Pe(∂Θ/∂t+ v · ∇Θ) = ∆Θ, (1)

Re (∂v/∂t+ v · ∇v) = −∇p+ ∆v, (2)

∇ · v = 0, x ∈ Ω, (3)

and the boundary conditions

Π · n = (Ca−1 −Θ)Kn− ∇τΘ, (4)

v · n = Vni, (5)

∂Θ/∂n = 0, x ∈ Γi, (6)

v → 0, Θ → x3 as |x| → ∞, (7)

where Ω denotes the domain occupied by the liquid, Γi is the surface of bubble i,
Vni is the normal interfacial velocity of bubble i, n is an outer normal unit vector
to a corresponding bubble surface, Π = −pI + (∇v + (∇v)T ) is the stress tensor, K
is a curvature and ∇τ = ∇− n(n · ∇) denotes the surface gradient. The dimensionless
parameters of this problem are: the Péclet number Pe = ua1/χo, the Reynolds number
Re = ua1ρo/ηo and the capillary number Ca = σ1Aa1/σ0. If Ca is negligible it follows
from (4) that the bubbles preserve their spherical shape with radii Ri = ai/a1 and that
Vni = V i · n, where V i is velocity of bubble i. The total force acting on each bubble is
given by

F i =

∮
Γi

Π · n ds = 0, i = 1, 2. (8)

The problem is completed by the kinematic condition

V i = dZ i(t)/dt, i = 1, 2, (9)

where Z i(t) denotes a radius vector to the centre of bubble i at moment t, and by the
initial conditions

Z i(0) = Z i0, i = 1, 2, (10)

Θ (0, x) = Θ0(x), x ∈ Ω. (11)

If the bubbles are placed initially parallel to the x3-axis, then, in view of the form
of A, the problem (2)–(11) possesses axial symmetry. Let the origin of the coordinate
system be chosen on the line connecting the bubble centres, then Z i = Zie3 and
V i = Vie3. In this paper we consider only the axisymmetric case.

If Re = 0, Ca = 0 and Pe = 0, the problem (2)–(11) reduces to the classical quasi-
steady formulation investigated by Meyyappan et al. (1983) and Feuillebois (1989). A
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brief summary of the methods used in these papers and their results is given in the
next section. Our aim is to study the effect of a weak convective transport (with small
but non-zero Pe), assuming non-deformability of the bubbles and negligible inertia.

3. Zero-order approximation
The zero-order approximation is the solution of (2)–(11) under the following

assumptions: Re = 0, Ca = 0 and Pe = 0. In this case the thermal and hydrodynamic
problems decouple. The temperature field can be found independently from the
velocity field as a harmonic function in Ω satisfying the boundary conditions (6), (7).
Once the temperature distribution on the bubble interfaces is known, the velocity
field is determined by solving (2)–(5), (8). The positions of the bubbles, Z1 and
Z2, and the separation distance between their centres, Z(t) = Z1(t) − Z2(t), change
with time. Although the temperature and velocity fields are found as solutions of
non-evolutionary problems, they depend on time parametrically via the quasi-steady
evolution of the geometry.

The quasi-stationary problem was first treated by Meyyappan et al. (1983) by use
of bi-spherical coordinates. The solution of the thermal problem was obtained as
a series involving coefficients to be calculated numerically from the infinite linear
system of equations. A method that allows that numerical effort of Meyyappan et
al. (1983) to be avoided and leads to a closed-form solution of the problem was
used by Feuillebois (1989), Loewenberg & Davis (1995) and Barton & Subramanian
(1990). This method is based on the introduction of a scalar heat potential and it
was first proposed by Sadhal (1983). Furthermore, we adopt the technique of the heat
potential to construct a zero-order approximation to our problem, and the technique
of Meyyappan et al. (1983) to construct the first-order expansion term. The details of
this procedure are given in Appendix A.

Let (r, θ, φ) be a spherical coordinate system with origin coinciding with the origin
of a bi-spherical coordinate system at some moment t. The temperature and the
stream function far from the bubbles have the following asymptotic forms:

Θ(0) − x3 = a (Z,R)P1(µ)/2r2 + O(r−3), (12)

ψ(0) = −b (Z,R)C−1/2
3 (µ) + O(r−1), (13)

where the size ratio R = R2 = a2/a1, µ ≡ cos θ, P1(µ) and C−1/2
3 (µ) denote Legendre

and Gegenbauer polynomials respectively, a and b are constants given by (A 14) and
(A 13), which depend on the separation and the bubble radii. Note that it follows
from (12) that the far-field distortion of temperature due to each bubble is a thermal
dipole.

The constants a and b can be determined from the formal expansion of the
quasi-steady solutions for the temperature and the stream function at infinity (see
Appendix A) or from the large-Z asymptotic solution. The dependence of these
constants on the separation distance for different bubble radii is shown in figure 2(a–d).
In the case of equal-sized bubbles, when R = 1, it follows from the formulas of
Appendix A and the symmetry of the problem that b(Z) = 0. Hence, the leading
term of the velocity decays as 1/r3 at r → ∞. It was shown by Feuillebois (1989)
that, in this case, the bubbles move with constant equal speeds and, hence, the
separation distance does not depend on time. For unequal bubbles, the calculations
performed by Meyyappan et al. (1983) demonstrate that the larger bubble always
migrate with larger velocity. The distance between the bubbles grows with time if
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Figure 2. The dependence of ȧ(Z(t)) (lower curve) and b(Z(t)) (upper curve) on the separation
distance, Z − R − 1, for different radii ratio: (a) R = 1.5, (b) R = 2.5, (c) R = 4, (d) R = 6. Dashed
curves are asymptotic evaluations for large Z (equation (32)).

the larger bubble is a leading, R < 1, and it decreases in the opposite case, R > 1.
Thus, as far as the relative motion of bubbles is concerned, R = 1 can be considered
as a critical value, in which the interaction pattern qualitatively changes. It can be
expected that in the vicinity of this critical value even small perturbations of the other
parameters substantially change the motion pattern. Below we demonstrate that this
is actually the case when convective transport is not entirely negligible and when
small perturbations of the Péclet number are considered.

4. Construction of the solution for small Pe
In this section we construct the first correction term to the quasi-stationary solution

described above when 0 < Pe� 1. Specifically, we are interested in the first correction
to the temperature field Θ = Θ(0) + ε(Pe)Θ(1) + o(ε(Pe)) and to the bubble migration
velocities, Vi = V

(0)
i (Z) + δ(Pe)V (1)

i + o(δ(Pe)), i = 1, 2, where δ(Pe), ε(Pe) � 1.
It is easy to see that an attempt to use a regular perturbation technique with the
natural choice, ε = Pe, leads to a problem for the leading-order correction to the
temperature Θ(1) which does not possess solutions that vanish at infinity. Thus, one
has to apply singular perturbation methods. Following a well-established procedure
(Acrivos & Taylor 1962) we construct inner and outer expansions for the temperature
field disturbance, Θ∗ = Θ − x3, denoted by h and H , respectively; h(t, x), t > 0,
x ∈ Ω satisfies the boundary condition ∂h/∂n = −∂x3/∂n, x ∈ ∂Ω and H(t, η), t > 0,
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η ∈ R3\{0}, η = εx, vanishes at infinity

lim
|η|→∞

H = 0, (14)

while the two expansions match asymptotically

H(|η| → 0) = h(|x| → ∞). (15)

4.1. Outer expansion

Let ρ = εr = |η| and let Θ∗(t, r, µ) = H(t, ρ, µ), then

∆ρH = ε−2Pe(Ht + εU · ∇ρH +U3), (16)

with U (η) = v(η/ε) and U3(η) = v3(η/ε). Recall that the velocity field satisfies
the steady Stokes equations with no external body force and hence it decays as
1/r2 at r → ∞. It is readily seen from (16) that at a length scale O(Pe−1/2) the
conduction and convection terms balance each other. Thus, an appropriate choice
for the outer variable is ε = Pe1/2. It means that in the outer region r > O(Pe−1/2).
The quasi-stationary solution described in the previous section can only be used as a
zero-order expansion term if both bubbles lie in the inner region, i.e. the separation
distance Z 6 O(Pe−1/2). Otherwise, the interaction of each bubble with an external
thermocapillary flow will dominate over their mutual interaction, and an O(Pe2)
correction predicted by Subramanian (1981) is expected to be the leading order. We
expand H as H = f0(ε)H

(0) + f1(ε)H
(1) + o(f1(ε)) and substitute in (16). It follows that

the zero-order outer expansion term H (0)(t, ρ, µ) satisfies the non-homogeneous heat
equation

f0(ε)∆ρH
(0) = f0(ε)H

(0)
t +U

(0)
3 (t, ρ, µ), U

(0)
3 = ε2b(t)µP2(µ)/ρ2 + O(ε3/ρ3), (17)

with the following boundary conditions:

lim
ρ→∞H

(0) = 0, lim
ρ→0

f0(ε)ρ
2H (0)/ε2 = lim

r→∞ r
2h(0) = a(t)µ/2. (18)

Consequently, we find from (17), (18) that f0(ε) = ε2.
The solution of the formulated problem can be expressed as a superposition

H (0) = H
(0)
1 +H

(0)
2 , where H (0)

1 satisfies the homogeneous heat equation with boundary

conditions (18) and H
(0)
2 satisfies equation (17) with corresponding homogeneous

boundary conditions. H (0)
1 has the form

H
(0)
1 (t, ρ, µ) =

ρµ

8
√
π

∫ t

0

a(τ)

(t− τ)5/2
exp

{
− ρ2

4(t− τ)
}

dτ, (19)

where a(t) = ȧ(t) = 0 at t → 0, and where the thin temporal boundary layer near
t = 0 is neglected.

Let b̂(s) be the Laplace image of b(t), then the solution of the second problem is
the inverse Laplace image of

Ĥ
(0)
2 = b̂(s)

[
2(−1 + e−ρ

√
s(1 + ρ

√
s))µ

5ρ2s

− e−ρ
√
s(30− 30eρ

√
s + 30ρ

√
s+ 12ρ2s+ 3eρ

√
sρ2s+ 2ρ3s3/2)P3(µ)

5ρ4s2

]
. (20)

Expanding the zero-order outer solution up to O(ε2) near ρ = 0 and re-writing it in
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terms of the inner variable we obtain

H =
µa(t)

2r2
− ε2

(
µȧ(t)

4
+
µ(1 + µ2)b(t)

8

)
+ O(ε3). (21)

The form of (21) indicates that the second term of the inner expansion is of the order
of ε2:

h = h(0) + ε2h(1) + · · · . (22)

In the case of equal-sized bubbles b(t) = 0 and a does not depend on time, hence
the expansion of the outer solution reads

H =
µa

2r2
+ O(ε3),

whereas the inner expansion has the form (22) with a non-zero h(1), as a result of the
convective transport in the vicinity of the bubbles.

4.2. Inner expansion

The first term of the inner expansion is given by the quasi-stationary temperature,
h(0) = Θ(0) − x3. The second term, h(1), can be found as a solution of the following
boundary value problem:

∆rh
(1) = Ξ (x, t), x ∈ Ω, (23)

∂h(1)/∂n = 0, x ∈ ∂Ω, (24)

lim
|x|→∞

h(1) = −
(
µȧ(t)

4
+
µ(1 + µ2)b(t)

8

)
, (25)

where

Ξ (x, t) = h
(0)
t + v(0) · ∇rh(0) + v

(0)
3 .

The term proportional to ȧ(t) and to b(t) in (25) reflects the influence of the temporal
change in the mutual positions of the bubbles, and the advection from the outer
region, respectively, and the right-hand side of (23) corresponds to the convective
transport in their vicinity.

Since the zero-order solution h(0), v(0) is found in the bi-spherical coordinate system
(ξ, ζ) fixed with the travelling bubbles (see Appendix A), it is a natural choice to solve
(23)–(25) in this coordinate system. The interface of the first bubble is described by
the coordinate surface ξ = α > 0 and the interface of the second bubble corresponds
to ξ = −β < 0. In this case h(0)(x, t) = h(0)(ξ(x, t), ζ(x, t), Z (0)(t)), so that care needs to
be exercised when computing the term h

(0)
t on the right-hand side of (23). Finally, this

reduces to

h
(0)
t = −V

∗

c

(
(1− µ̃ cosh ξ)

∂h(0)

∂ξ
+ sinh ξ(1− µ̃2)

∂h(0)

∂µ̃

)

+
ċ

c

(
µ̃ sinh ξ

∂h(0)

∂ξ
− cosh ξ(1− µ̃2)

∂h(0)

∂µ̃

)
+
∂h(0)

∂Z (0)
Ż (0),

where µ̃ ≡ cos ζ and V ∗ = 1
2
(V (0)

1 + V
(0)
2 ) + (R2

1 − R2
2)Ż (0)/Z (0)2 is a translational

velocity of the origin of the bi-spherical coordinate system in a chosen fixed frame;
c = R1 sinh α denotes a characteristic length of the bi-spherical coordinate system and
ċ = R2 cosh β coth αŻ (0)/Z (0) is its time derivative.

An important result is that the problem for h(1) is quasi-stationary. Its solution
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depends on time parametrically via the right-hand side of (23), the conditions at
infinity (25), and the evolution of the domain. It could be parameterized by Z , since

ȧ(t) =
da

dZ
Ż =

da

dZ
(V (0)

1 − V (0)
2 ).

The solution of (23)–(25) can, thus, be expressed as

h(1) = h0 + h1 + h2,

where

h1 = −
(
µȧ(t)

4
+
µ(1 + µ2)b(t)

8

)
(1− e−r

2

) (26)

satisfies the condition at |x| → ∞,

h2 = − 1

4π

∫
R3

Ξ∗(y)

|x− y|dV (y) (27)

satisfies the Poisson equation with the right-hand side (Ξ−∆h1) and decays at infinity.
Ξ∗ in (27) is a smooth continuation of (Ξ − ∆h1) onto R3. Thus, the function h0 is
harmonic in Ω,

∆h0 = 0, (28)

and satisfies the boundary conditions

h0 → 0, |x| → ∞, (29)

∂h0

∂n
= f(x) = −∂h1

∂n
− ∂h2

∂n
, x ∈ ∂Ω. (30)

Note that for the equal-sized bubbles, Ż(0) = V (0) = 0, hence ȧ = 0 and also b = 0.
In this case h1 = 0, and the constructed solution is the same as that provided by the
regular perturbation technique. Moreover, if only the finiteness of the temperature
disturbance is required instead of the decay at infinity, the solution constructed
formally via regular expansion carried to O(ε2), results in the same temperature
gradients on the interfaces and, hence, still correctly predicts the bubbles migration
velocities, while it is clearly incorrect as a solution of the problem, since it fails to
vanish at infinity. This is qualitatively the same result as in the problem of steady
migration of a single bubble in a thermal gradient at small Pe (Subramanian 1981),
where the formal regular expansion carried to O(Pe2), wherein an incorrect result for
the temperature is retained, will correctly predict the bubble migration velocity.

Problem (28)–(30) was solved numerically. The details of the solution are given
in Appendix B. Once the temperature distribution on the interface is known, the
solution of the hydrodynamic problem can be obtained in a straightforward manner
(see Appendix A). The calculation shows that the motion of the leading bubble
is always enhanced, while the motion of the trailing one is retarded. The relative
velocity V = V1 −V2 of equal-sized bubbles is plotted in figure 3 as a function of the
separation distance Z −R1−R2. It is seen that the relative velocity of the equal-sized
bubbles tends to zero at both large and at small proximities and it has a maximum at
Z ' 2.3. At large separations the relative velocity of the equal-sized bubbles decays as
Z−2, while at close proximity the numerical scheme fails due to the slow convergence
of the solution series.

The corrections to the individual velocities of unequal bubbles, V (1)
i , versus sepa-

ration distance are given in figures 4(a) and 4(b) for the cases R = 1.2 and R = 0.6,
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Figure 4. The corrections to the individual velocities of unequal bubbles: (a) R = 1.2 and (b)
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Dashed curves are asymptotic evaluations for large Z (equation (37)).

respectively. It is seen from this figure, that the larger bubble has a more pronounced
effect on the smaller one and vice versa. The magnitude of the velocity corrections,
V

(1)
i , decays rapidly with increased separation and thus for large Z the numerical

computation is time consuming. An efficient method to study this asymptotic limit is
realized in the next subsection.

4.3. Widely separated bubbles

When the separation distance is large, Z � R1 +R2, there is another small parameter
that enters the problem, 1/Z . In this sub-section we derive asymptotically valid
corrections to the individual migration velocities of widely separated bubbles in
closed form.

By making use of the method of reflections (Happel & Brenner 1965; Anderson
1985) the zero-order terms of the inner expansions for h(0) and ψ(0) can be found (see
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(C 1)–(C 2) in Appendix C). The individual drift velocities of the bubbles are given by

V (0)
i =

Ri

2

[
1 +

(
Rj

Ri
− 1

)
R3
j

Z3

]
e3 + O(Z−5), i, j = 1, 2, j 6= i. (31)

It is readily seen that the solution, constructed in the previous sub-section, is valid
for all separations, when Z 6 O(Pe−1/2), since the ratio of terms neglected in the
zero-order outer expansion to those taken into account does not depend on Z . In
particular, Ht and U3 in (16) are of O(ε2/Z4) while εU · ∇ρH is of O(ε5/Z4). On the
other hand, we know a priori that the leading-order correction to the velocities of the
bubbles which does not depend on Z is of O(ε4) (Subramanian 1981). It follows from
(C 1), (C 2) and (31) that for Z � R1 + R2, H

(0) is governed by (17) and (18) with

ȧ = −b =
3R3

1R
3
2

Z4
(R1 − R2). (32)

The first-order term of the inner expansion is to be determined from (23)–(25) with
ȧ and b given by (32). The details of the solution are given in Appendix C. In final
form

h(1) = h
(1)
1 (r1, θ1) + h

(1)
2 (r2, θ2),

where

h
(1)
i =

R4
i

12ri
− R7

i

48r4
i

+

(
R6
i

9r3
i

− R4
i

6ri
− R7

i

24r4
i

)
P2(µi), (33)

(ri, θi, φ) denote the local spherical coordinate systems with their origins at the
centres of the bubbles with the lines θi = 0 parallel to the direction of the applied
temperature gradient, e3, and µi = cos θi. Note that h(1)

i coincides with the leading
order of the expansion of the temperature field around a single bubble constructed by
Subramanian (1981) and Bratukhin (1975). These expansions do not contain the first
harmonic and, hence, do not contribute to the translational velocity of the ith bubble.
However, this field decays slowly as 1/ri far from the ith bubble and, thus, induces a
perturbation of the temperature of O(Z−1) in the vicinity of the neighbouring bubble.
Moreover, the P2-term in (33) causes a thermocapillary flow in the vicinity of the
ith bubble that is expected to advect the other bubble with some non-zero speed.
We next proceed to an accurate evaluation of these perturbations and the induced
contribution to the migration velocities.

The Poisson equation (23) is satisfied by h(1) in Ω with the accuracy of O(Z−3).
Each of the terms h(1)

i in (33) satisfies the boundary conditions on the interface of the
ith bubble with the accuracy of O(Z−3), while on the interface of the other bubble its
normal derivative is of O(Z−1). Following the method of reflection we add harmonic
functions h∗i with ∂h∗i /∂n = −∂hj/∂n, x ∈ Γi. The constructed solution is of the form

h(1) =

2∑
i=1

j 6=i

R4
i

12ri
− R7

i

48r4
i

+ (−1)j
R4
j R

3
i

24Z2r2
i

P1(µi) +

(
R6
i

9r3
i

− R4
i

6ri
− R7

i

24r4
i

)
P2(µi) + O(Z−3).

(34)

The correction to the temperature distribution on the interface Γi is

h(1) =
3R3

i

48
− R4

i

12Z
+ (−1)j

RiR
4
j

8Z2
P1(µi)− 7R3

i

72
P2(µi) + O(Z−3). (35)

The P2-term in the temperature distribution (35) generates thermocapillary flow in
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the vicinity of ith bubble with a stream function

ψ̃
(1)
i =

7

120
R5
i

(
R2
i

r2
i

− 1

)
C−1/2

3 (µi), (36)

which, in turn, translates the jth bubble at a rate δV (1)
ij due to the reflection of the

velocity field from ith bubble. This contribution is found by use of Faxén’s theorem as
modified for fluid particles (Anderson, 1985). Finally, the corrections to the migration
velocity of the bubbles are found, applying the force free condition

V
(1)
i =

1

2

∫ 1

−1

h
(1)
i |ri=RiP1(µi)dµi + δV

(1)
ji

= (−1)j
R5
j

24Z2

(
Ri

Rj
+

7

5

)
+ O(Z−3), i, j = 1, 2, i 6= j. (37)

These velocities are depicted versus the separation distance Z−R1−R2 in figures 3(a, b)
and 4(a, b) (dashed lines).

Thus, we have found that for widely separated bubbles the influence of the convec-
tive transport in their vicinity dominates over the influence of the outer region. This
means that in the first approximation in 1/Z a regular perturbation applies for all
radius ratios and not for equal-sized bubbles only, as for moderate separations, and
the singularity appears only at O(Z−4).

5. The relative motion of the bubbles
The relative velocity of the bubbles, V = V1 − V2, can be expanded as

V = V (0)(Z,R) + PeV (1)(Z,R) + O(Pe2), (38)

where V (0) is a quasi-stationary relative velocity (Meyyappan et al. 1983). As men-
tioned in § 4, V (0)(Z,R) is positive if R < 1, i.e. the small bubble is the trailing one. It
is negative if R > 1 and V (0)(Z, 1) = 0.

It is readily seen from (38) that, if the bubble sizes are substantially different, the
first term in the relative velocity expansion prevails, and the constructed O(Pe) term
provides only a small correction to the quasi-stationary velocity. In contrast to this, for
equal-sized bubbles the first term vanishes and the second term becomes the leading
one. Our results show that V (1) is always positive, hence in this case V > 0, and the
separation distance grows with time. For unequal bubbles with radius ratio close to
one the two leading terms may be of similar magnitude. This case is considered below
in more detail.

Let

B(Z) = −∂V
(0)(Z,R)

∂R

∣∣∣∣R = 1.

It follows from the analysis of the quasi-steady problem (see Appendix A), that B(Z)
is positive. The expansion in (38) can be re-written as

V = Pe

(
V (1)(Z, 1)− R − 1

Pe
B(Z)

)
+ O(Pe2, (R − 1)2, Pe(R − 1)). (39)

It is obvious that if

Q =
R − 1

Pe
<
V (1)(Z, 1)

B(Z)
= G(Z), (40)
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Figure 5. Domains of attraction and repulsion of slightly unequal bubbles in the plane of
parameters (Z,Q) (equation (40)).

the relative velocity is positive, and the bubbles are repulsed. Note that this condition
is always satisfied if R 6 1. In the opposite case the relative velocity is negative,
and the bubbles are attracted. The domains of attraction and repulsion in the plane
of parameters (Z,Q) are shown in figure 5. The function G(Z) has a maximum
G(Z∗) = Q∗ ' 0.0309 at Z∗ ' 2.3. For large Z it decays as 0.4Z−2 as is evident from
equations (31) and (37).

Recall now that, while the parameters R and Pe are constants, Z depends on time.
Thus, a point in the (Z,Q)-plane which is initially at Z0 moves parallel to the Z-axis.
There are three distinct cases. First if R 6 1 then Q 6 0, and the system remains in
the repulsion domain for all values of Z . The bubbles move apart from each other,
and the separation distance grows with time. For large separations the dynamics of
this growth can be estimated as follows. If Q < 0 (R < 1), V (0) is a positive constant
and V (1) decays as 1/Z2. Hence, at large Z , the relative velocity is determined by the
constant V (0), and the separation distance grows linearly with time. If Q = 0 (R = 1)
the first term in (39) vanishes and the relative velocity is determined by the second
one. An integration of the equation

dZ

dt
= V (Z) ' PeV (1) ' 0.4Pe

Z2

yields that the separation distance grows as (Pe t)1/3 for t→∞ .
In the second case, if Q > Q∗ (R > 1 + Q∗Pe), the point (Z(t), Q) remains in the

attraction domain for all t. The bubbles are attracted and eventually collide.
For the third case, consider the situation where 0 < Q < Q∗ (1 < R < 1 + Q∗Pe).

If Q = G(Z0) the relative velocity equals zero, and the separation distance does not
change with time. The unequal bubbles migrate with equal constant velocity, and the
process is stationary. If Q > G(Z0) and the initial separation distance is large enough,
Z0 > Z∗, the bubbles are attracted. The separation distance decreases until the point
(Z(t), Q) approaches the curve Q = G(Z), where the relative velocity vanishes. After
that, the bubbles translate with equal constant velocities keeping a constant separation
distance. If Q > G(Z0) and the initial separation distance is small enough, Z0 < Z∗,
the bubbles are attracted and eventually collide as happens for Q > Q∗. If Q < G(Z0)
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Figure 6. Regions of the long-time asymptotic behaviour of slightly unequal bubbles in the space of
parameters (Z0, Q), where Z0 denotes an initial separation distance: (i) attraction up to collision; (ii)
attraction up to migration with equal velocities; (iii) repulsion up to migration with equal velocities;
(iv) infinite growth of separation distance.

the bubbles are repulsed. The separation distance grows with time, and the point
(Z(t), Q) approaches again the curve Q = G(Z).

Note that for any value of Q ∈ (0, Q∗) there corresponds one or two values of steady
separation distance. It appears that, in contrast to the quasi-stationary situation where
the relative velocity between unequal bubbles is always non-zero, the weak convective
transport may lead to a selection of a steady separation distance corresponding to
the points on the curve Q = G(Z). It follows from the above considerations that
for Z > Z∗ these steady configurations are stable with respect to the separation
perturbations, while for Z 6 Z∗ they are unstable. Thus, three different long-time
asymptotic behaviours of the bubbles motion exist: infinite growth of separation
distance, attraction up to collision and attraction or repulsion up to a steady migration
of separated bubbles. These are shown in the space of parameters (Z0, Q) in figure 6.

6. Combined effect of gravity and thermocapillarity
When gravity is not negligible, the momentum equation (2) and the force balance

(8) should be modified as follows:

Re (∂vi/∂t+ vi · ∇vi) = −∇pi + ∆vi + meg, (41)

F i =

∮
∂Ωi

Π · n ds− 4
3
πR3

i meg = 0, i = 1, 2, (42)

where the dimensionless body force density is m = (uη)−1a2
1ρo|g| with g being the

gravitational acceleration and eg = g/|g|. We also assume that the Bond numbers
Boi = |g|ρoai/σ0, i = 1, 2, are small so that the bubbles preserve their spherical
shape. The relative influence of gravity and thermocapillary forces on the motion
of the bubbles is controlled by m. If m 6 O(1) then thermocapillary forces have a
considerable effect on the fluid motion; if m� 1 then the Marangoni effect provides
only a small perturbation to the gravity-induced migration of the ith bubble. In
what follows we shall focus on the former case of combined effects of gravity and
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thermocapillarity (m 6 O(1)) where, for simplicity, eg is directed parallel to e3 along
the line of centres.

Due to the linearity of the quasi-steady problem the zero-order solution can be con-
structed as a superposition of the solutions of two separate problems: thermocapillary-
induced bubble migration and gravity-induced bubble migration, i.e.

ψ(0) = ψ
(0)
T + ψ

(0)
G .

The latter problem was studied by Haber et al. (1973). It can be shown that far from
the bubbles the stream function has the following asymptotic form:

ψ(0) ' ψ(0)
G = −md(Z,R)(1− µ2) r + O(1), (43)

while the temperature is given by (12).
As in § 4, we construct the first correction term to the quasi-steady solution when

0 < Pe � 1. When gravity is present the regular expansion in powers of Pe fails
as in § 4 due to the slow decay of the velocity field far from the bubbles. Therefore,
singular perturbation techniques are used. In what follows we distinguish between
two sub-cases: m� 1 and m = O(1).

6.1. Weak gravity field, m� 1

Following the same arguments as in § 4 we let ε =
√
Pe, and expand H as H =

f0(ε)H
(0) + f1(ε)H

(1) + o(f1(ε)), and substitute in (16) together with (43). This defines
the following problem for the zero-order term of the outer expansion:

f0(ε)∆ρH
(0) = f0(ε)H

(0)
t +U

(0)
3 (t, ρ, µ), (44)

where

U
(0)
3 = ε2b(t)µP2(µ)/ρ2 + εm d(t)(1 + µ2)/ρ+ O(ε3/ρ3, ε2m/ρ2). (45)

The boundary conditions are as in (18),

lim
ρ→∞H

(0) = 0, lim
ρ→0

f0(ε)ρ
2H (0)/ε2 = lim

r→∞ r
2h(0) = a(t)µ/2. (46)

It is readily seen that f0(ε) = ε2 and m is rescaled as m = εm̄, where m̄ = O(1).
Following the procedure used in § 4.1 we obtain the limit of the outer solution near
ρ = 0 in terms of the inner spatial variable

H =
µa(t)

2r2
− ε2

(
µȧ(t)

4
+
µ(1 + µ2)b(t)

8
+

4m̄

3
√
π

∫ t

0

d(λ)

(t− λ)1/2
dλ

)
+ O(ε3). (47)

The form of (47) suggests that the leading correction to the temperature inner
expansion, h(1), is of O(ε2) and, thus, (25) becomes the modified expression

lim
|x|→∞

h(1) = −
(
µȧ(t)

4
+
µ(1 + µ2)b(t)

8
+

4m̄

3
√
π

∫ t

0

d(λ)

(t− λ)1/2
dλ

)
. (48)

The addition of the ‘history’ integral term in (48), being a function of t only, does
not contribute to the temperature gradient on the bubble surface at O(Pe). It follows
from (48) that the weak gravity field does not change the correction to the bubble
migration velocities in the leading order. Thus when m 6

√
Pe the effect of gravity

does not enter the first-order correction of the velocities and is restricted to the
temperature field only.
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6.2. Gravity and thermocapillarity of the same order of magnitude, m = O(1)

As in § 6.1 we expand H(t, ρ, µ) as H = f0(ε)H
(0) + f1(ε)H

(1) + o(f1(ε)) and assume
that ε =

√
Pe. Since m is of O(1), U3 is of O(ε) in the leading order. Therefore, (16)

suggests that f0(ε) = ε so that εH (0)
t balances U(0)

3 Otherwise, (16) would not have
solutions that are bounded at infinity. The zero-order term in the outer expansion of
the temperature satisfies the non-homogeneous heat equation

ε∆ρH
(0) = εH

(0)
t +U

(0)
3 (t, ρ, µ), (49)

where

U
(0)
3 = εm d(t)(1 + µ2)/ρ+ O(ε2/ρ2). (50)

When m = O(1) the advection in the outer region is governed by the gravity only
as a result of slow decay of the velocity far from the bubbles. The corresponding
boundary conditions are now

lim
ρ→∞H

(0) = 0, lim
ρ→0

ρH (0) = lim
r→∞ rh

(0) = 0. (51)

The solution to (49)–(51) can be obtained readily as in § 4.1. Expanding H (0) near
ρ = 0 up to O(ε) we obtain

H = −ε 4m

3
√
π

∫ t

0

d(λ)

(t− λ)1/2
dλ+ O(ε2). (52)

This expression indicates that the leading correction to the temperature in the inner
region is of O(ε). Thus, h(1) is a harmonic function satisfying homogeneous Neumann
boundary conditions on the bubble surface with the following asymptotic behaviour:

lim
|x|→∞

h(1) = − 4m

3
√
π

∫ t

0

d(λ)

(t− λ)1/2
dλ.

The inner expansion of the temperature, h(t, r, µ), can be constructed as

h = h(0) − Pe1/2 4m

3
√
π

∫ t

0

d(λ)

(t− λ)1/2
dλ+ O(Pe). (53)

It follows from (53) that the integral ‘history’ term contributes to the uniform heating
(cooling) of the fluid in the inner region.

It should be noted that the above O(Pe1/2) correction to the temperature also
persists in the case of an isolated bubble, when d = 1. It appeared impossible to
find a steady correction to the temperature field, bounded at infinity, when gravity
is included. Thus, the problem is essentially non-steady. In contrast to this, in the
case of pure thermocapillary motion (Subramanian 1981), it is justified to consider
a steady correction to the temperature field since there is no stokeslet term in the
velocity field around the bubble and the convective transport can be balanced by
stationary diffusion. On physical grounds, this approach is valid, since the heat is
not advected by the thermocapillary motion of the fluid far from the bubble. On
the other hand, a gas bubble rising in a liquid with a vertical linear temperature
gradient in the presence of gravity, would drag a relatively cold portion of liquid
with it towards the hotter region while the diffusion is not fast enough at this order
to balance the convective transport. It can be expected that if a perturbation of the
Stokesian velocity field is considered simultaneously with the perturbed temperature
field, the exponential decay of the velocity perturbations in the outer Oseen region
will give rise to stationary temperature corrections.
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(a) (b)

(c) (d )
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Figure 7. Streamlines for the system of equal-sized bubbles at Pe = 0: (a) Z − R − 1 = 1.5, (b)
Z −R− 1 = 0.2 in the laboratory frame; (c) Z −R− 1 = 1.5, (d) Z −R− 1 = 0.2 in a frame moving
with the bubbles. The streamlines corresponding to the same values of the stream function, ψ(0), are
plotted in (a) and (b), and in (c) and (d). The numbers denote values of ψ(0) in (c) and (d).

Finally, the leading-order correction to the bubble migration velocity, due to the
influence of gravity, is again of O(Pe) since the constructed integral ‘history’ term
does not alter surface temperature gradients. The corrections to the bubble veloci-
ties depend on the next term of the outer temperature expansion, H (1), which has
to be computed to determine the asymptotically valid matching condition for the
corresponding inner problem for h(2).

7. Discussion
Our results show that, when two bubbles interact, a weak convective transport

speeds up the motion of the leading bubble and slows down the motion of the trailing
one compared to the migration induced by molecular transport only. To understand
this result, recall that for the case of small Pe, the leading-order convective effects
are due to the heat transport along the streamlines of the quasi-stationary zero-
Pe flow. The characteristic picture of these streamlines for equal-sized bubbles is
shown in figure 7(a, b) in a laboratory frame and in figure 7(c, d) in a frame moving
with the bubbles. The latter is more useful for understanding the convective effect.
When weak convective heat transport takes place, the warmer portion of fluid is
brought from infinity to the upstream pole of the leading bubble and also to the
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downstream pole of the trailing one. The streamline pattern in figure 7(c, d) reveals
that a stagnation zone exists in the interparticle region, where the motion of fluid
is weak and thus diffusive transport dominates over convection even at finite Pe.
This means that the temperature distribution within the interparticle region is not
influenced by convective transport as much as that outside this region and the
temperature drop over the surface of the leading and trailing bubbles increases and
diminishes, respectively. Thus, the leading bubble speeds up while the motion of the
trailing one is retarded by thermocapillary convection. In the absence of gravity, the
thermocapillary force acting on each bubble is balanced by the viscous resistance so
that the particle is force free. At large separation the thermocapillary force exerted
on the bubble by the convective transport due to the interaction with the other
bubble vanishes. When the bubbles approach each other this force grows, but remains
bounded. This behaviour can be understood by viewing, again, figure 7(c, d) where
it is evident that the stagnation zone in the interparticle region becomes wider as
bubbles approach each other. This by itself would enhance the separation rate. On
the other hand the viscous resistance to the relative motion of the bubbles is known
to grow without bound as the separation distance vanishes (see e.g. Loewenberg &
Davis 1995), so the resulting V (1)

i must then vanish at both Z →∞ and Z → R1 +R2.
This means that the corrections to velocities of the bubbles have maxima at some
separation distance as a result of an interplay between the thermocapillary and the
viscous contributions to the force.

In general, it can be concluded that weak convective transport tends to retard the
collision rate of two bubbles. The situation is qualitatively the same as in the case
of predominant convective transport analysed by Balasubramaniam & Subramanian
(1996). In that case it is due to a different mechanism in which a thermal wake
formed past the leading bubble reduces the temperature change over the surface of
the trailing one and, thus, substantially retards its thermocapillary-induced motion,
while the leading bubble moves with the same speed as when isolated. As a result, the
motion of the bubbles towards each other is retarded and the motion away from each
other is enhanced. Such behaviour was observed experimentally aboard the space
shuttle and was reported by Balasubramaniam et al. (1996). In these experiments
the Reynolds number was small but the Péclet number was of moderate values.
Nevertheless, the qualitative effects on the relative motion of the bubbles in the
analysis and in the experiments are remarkably similar.

The results of this paper demonstrate that a weak convective energy transport
affects the thermocapillary interaction between two bubbles moving in an external
temperature gradient, by adding O(Pe) corrections to the migration velocities of the
bubbles. This effect is more pronounced than that obtained by Subramanian (1981,
1983), who found a weaker contribution of O(Pe2) of the convective transport to the
thermocapillary migration velocity of an isolated drop or bubble. In that case, the
leading-order perturbation of the temperature field is also of O(Pe), but its influence
on the migration velocity vanishes as a consequence of the high symmetry of the flow
and temperature fields. Thus, it was necessary to construct higher-order expansion
terms in order to obtain the leading-order correction to the migration velocity. This
symmetry is broken in the two-bubble migration case.

The perturbations of the migration velocities constructed decay as Pe/Z2 with
the growth of the separation distance. For an isolated bubble the leading-order
correction to the migration velocity was found by Subramanian (1981) to be equal to
− 301

14 400
Pe2R3

i . Hence, when the bubbles are widely separated, two asymptotic limits
can be distinguished: R1 + R2 � Z 6 Pe−1/2 and Pe−1/2 � Z . For the first one
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the O(Pe) correction constructed in the present paper is the leading-order term. For
equal-sized bubbles, for which the zero-order migration velocities are identical, it
means that the weak convective transport causes the relative motion of the bubbles in
the first approximation. In the second case, the O(Pe2) correction of isolated bubbles
is recovered and, hence, in the first approximation the weak convective transport
results in retardation of the thermocapillary migration of both bubbles. Note that the
O(Pe) correction to the velocity of the smaller bubble is much more pronounced than
that to the velocity of the larger one, while the O(Pe2) term is larger for the larger
bubble.

It is interesting to note that in the general case both the temporal change of the
mutual positions of the bubble and the convective effects along streamlines contribute
to the bubble migration velocities at all separations. This is distinctly different from the
case of a spontaneous thermocapillary migration of drops caused by interphase heat
or mass transfer (Lavrenteva et al. 1999). In that study, the effect of temporal change
of the geometry of the flow was found to be more significant than the convective
transport along the streamlines for moderate separations and the correction terms
obtained are of O(Pe1/2). Only when separation is large does the convective transport
becomes dominant and the correction reduce to the quasi-steady result of O(Pe).
Such a strong difference can be attributed to the fact that, in the case of spontaneous
interaction, each drop acts as a source of surfactant with a far concentration field
decaying as 1/r, while in the present case each bubble acts as a thermal dipole, with
temperature field decaying as 1/r2.

The quasi-steady approximation to the migration velocity of the bubbles (Pe = 0)
reveals a critical region near R = 1 at which the relative motion of the bubbles changes
from attraction at R > 1 (the leading bubble is smaller) to repulsion at R < 1 (the
trailing bubble is smaller). The weak convective transport, leading to a small correction
to the migration velocities of the bubbles, may result as a major factor influencing the
bubble interaction in this critical region. The corrections may change the direction of
the relative motion from attraction to repulsion, and lead to the appearance of an
interaction pattern that does not exist for Pe = 0. For the radii ratio R = 1 + O(Pe)
there exist potentially two steady separation distances at which the bubbles migrate
with constant velocities. The steady state with the larger separation is stable, while
that with the smaller separation is unstable to axisymmetric distortions of the bubble
positions. Thus, three different long-time asymptotic behaviours of interacting bubbles
are possible: attraction up to collision, infinite repulsion and a stationary translation
with equal velocities at some proximity selected by the thermocapillary convection.
Note that, although this result was obtained asymptotically assuming small Pe, it is
natural to anticipate that such an interaction pattern may also exist for moderate Pe
and significantly unequal bubble sizes.

When a constant buoyancy force is included, the stokeslet term in the velocity field
leads to a correction to the temperature field in the form of a ‘history’ term. This term
is a spatially homogeneous function of time only and thus does not contribute to
the bubble migration velocities at O(mPe1/2), where m is the parameter characterizing
the relative influence of gravity and thermocapillarity in (42). When gravity forces
are weak compared to thermocapillary ones, m 6 Pe1/2, the results obtained in §§ 4
and 5 for the case of a pure thermocapillary motion are still valid at O(Pe). When
these forces are of the same order of magnitude, m = O(1), the leading term of the
bubble velocities correction remains of O(Pe); however, its explicit evaluation requires
further expansion of the temperature field.

When gravity is negligible, the analysis is expected to be applicable to more general
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cases: (i) drops with material properties compatible to that of the ambient fluid; (ii)
arbitrary orientation of the line of centres with respect to the temperature gradient;
(iii) complex systems containing more than two drops or drops adjacent to walls and
interfaces. The expected result is that, in these more general cases, the leading-order
perturbations of the migration velocity will be of O(Pe) for moderate separation
distance.
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Appendix A. Quasi-stationary solution revisited
A.1. Hydrodynamic problem

The general solution of the Stokes equations in Ω, decaying at infinity, can be found
using a bi-spherical coordinate system, (ξ, ζ, φ), related to the cylindrical coordinate
system by z = c sinh ξ/(cosh ξ − cos ζ), ω = c sin ζ/(cosh ξ − cos ζ). The surface of
the first bubble is described by ξ = α > 0 and the surface of the second bubble
corresponds to ξ = −β < 0; c is given by c = R1 sinh α = R2 sinh β. Note, that Ri is
equal to either R (scaled radius of the trailing bubble) or 1. For a given separation
distance between the bubble centres, Z = Z1 − Z2,

cosh α = (Z2 + R2
1 − R2

2)/2ZR1, cosh β = (Z2 − R2
1 + R2

2)/2ZR2. (A 1)

The stream function ψ has the following form (Stimson & Jeffery 1926; Happel &
Brenner 1965; Meyyappan et al. 1983)

ψ = (cosh ξ − µ̃)−3/2

∞∑
n=1

Wn(ξ)C−1/2
n+1 (µ̃),

Wn = a−n cosh n−ξ + b−n sinh n−ξ + a+
n cosh n+ξ + b+

n sinh n+ξ,

 (A 2)

where n± = n+ 1/2± 1, C
−1/2
n+1 (µ̃) are Gegenbauer polynomials and µ̃ ≡ cos ζ; a±n and

b±n are sets of constants to be determined using the appropriate boundary conditions
(4) and (5) for the velocity and temperature fields. The expressions for these constants
are (Meyyappan et al. 1983)

a±n =
n(n+ 1)

2s±
(s±β I

n
α − s±α Inβ ± c2s±β e

±
α V1 ± c2s±α e

±
β V2),

b±n = ∓n(n+ 1)

2s±
(c±β I

n
α + c±α I

n
β − c2s±β e

±
α V1 + c2c±α e

±
β V2),

where

(c, s)±α,β = (cosh, sinh)n±(α, β), s± = sinh n±(α+ β), e±α,β =
exp(−n±α, β)√

2(n+ n±)
.

The integrals Inα,β are related to the temperature distribution on the bubble surfaces
by

Inα,β = −c
2

2

∫ 1

−1

(
∂θ

∂µ̃

)
ξ=α,−β

(cosh (α, β)− µ̃)−1/2C−1/2
n+1 (µ̃) dµ̃.

Requiring the force acting on each bubble to be zero (Happel & Brenner 1965;
Meyyappan et al. 1983) gives the following system for the individual bubble velocities
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V1 and V2:

V1∆
+
1 + V2∆2 = Fα, (A 3)

V1∆2 + V2∆
−
1 = Fβ, (A 4)

where

∆±1 =

∞∑
n=1

n(n+ 1)√
2(2n− 1)(2n+ 3)

[
(2n− 1)

exp (±n+(β − α))
s+

− (2n+ 3)
exp (±n−(β − α))

s−

]
,

∆2 =

∞∑
n=1

n(n+ 1)√
2(2n− 1)(2n+ 3)

[
(2n+ 3)

exp (n−(β + α)

s−
− (2n− 1)

exp (n+(β + α))

s+

]
,

Fα =

∞∑
n=1

(
g−α I

n
β − g+

β I
n
α

)
, Fβ =

∞∑
n=1

(
g+
α I

n
β − g−β Inα

)
,

g±α,β = ± 1

2(2n+ 1)

[
exp (±n+α, β)

s+
− exp (±n−α, β)

s−

]
.

A.2. Thermal problem. Zero-order approximation

Following Sadhal (1983) we introduce the scalar function ϕ and define the scaled
heat flux vector q = ∇θ(0) as

q = ∇θ(0) = ∇×
(ϕ
r
eφ

)
, (A 5)

where eφ is the unit vector in the φ-direction. The bi-spherical components of q are
given by

qξ =
cosh ξ − µ̃

c

∂θ(0)

∂ξ
= −cosh ξ − µ̃

cr

∂ϕ

∂ζ
, qζ =

cosh ξ − µ̃
c

∂θ(0)

∂ζ
=

cosh ξ − µ̃
cr

∂ϕ

∂ξ
.

(A 6)

Since ∇× q = 0, the scalar function ϕ satisfies E2ϕ = 0 with boundary conditions

ϕ = 0, ξ = α,−β, (A 7)

ϕ→ r2/2, r →∞. (A 8)

The general solution for the field ϕ that satisfies (A 8) is

ϕ(ξ, µ̃) = (cosh ξ − µ̃)−1/2

∞∑
n=1

(E(0)
n cosh n0ξ

+F (0)
n sinh n0ξ + c2

√
2n(n+ 1)e−|ξ|n0 )C

−1/2
n+1 (µ̃), (A 9)

where n0 = n + 1/2. Using the generating function of Gegenbauer polynomials and
(A 7) yields

E(0)
n = −c

2
√

2n(n+ 1)

so
(eoβs

o
α + eoαs

o
β), (A 10)

F (0)
n =

c2
√

2n(n+ 1)

so
(eoβc

o
α − eoαcoβ), (A 11)
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where

(c, s)oα,β = (cosh, sinh)n0(α, β), so = sinh n0(α+ β), eoα,β = exp (−n0 α, β).

It follows from equations (A.1), (A 6) and (A 9) that

Inα,β = ∓c
3
√

2soβ,α
so

. (A 12)

Thus the individual bubble velocities V1 and V2 could be found from the set of the
two linear equations (A 3), (A 4),

Expanding the formal series solution for the stream function far from the pair of
bubbles and taking into account that there is no stokeslet at infinity, one obtains

∞∑
n=1

(a−n + a+
n ) = 0, b(Z,Ri) = −√2

∞∑
n=1

(b−n n− + b+
n n+), (A 13)

while a(Z,R) is found from the far field of ϕ in the same manner,

a(Z,R) = −2
√

2c

∞∑
n=1

En. (A 14)

Appendix B. Numerical procedure
The right-hand side of (30) is computed in a cylindrical coordinate system

(ω, z, φ). At the point x on the interface with z = zx = Ri cos θi + Zi, ω = ωx =√
R2
i − (zx − Zi)2 = Ri sin θi for zx ∈ (Zi − Ri, Zi + Ri), i = 1, 2.

∂h1

∂n
=
ω2
xZi(1− e−ω2

x−z2
x)

8(ω2
x + z2

x)
3/2Ri

[
2ȧ(t) +

ω2
x + 4z2

x

ω2
x + z2

x

b(t)

]

−2(ω2
x + zx(zx − Zi)) e−ω2

x−z2
x

Ri(1− e−ω2
x−z2

x)
h1(ωx, zx).

The normal derivative of h2 was approximated the second-order central differences
while the values of h2(ω, z) were calculated from (27) after it was integrated with
respect to φ:

h2(ωx, zx) = −1

π

∫ ∞
0

∫ ∞
−∞

ωΞ∗(ω, z)
[(ω + ωx)2 + (z − zx)2]1/2

K (k) dzdω, (B 1)

where

k2 =
4ωωx

(ω + ωx)2 + (z − zx)2
,

with K being the complete elliptic integral of the first kind with argument k, defined
as

K (k) =

∫ π/2

0

dφ

(1− k2 cos2 φ)1/2
.

Evaluation of the integral (B 1) was performed numerically. The domain of integration
was {(ω, z) ∈ [0, B]× [−B,B]}, where the value of B was chosen so that the absolute
value of the integrand did not exceed 10−6 outside this domain.

Once the right-hand side of (30) is computed, the boundary value problem (28)–
(30) for h0 can be solved by making use of the bi-spherical coordinates. The general
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solution of the Laplace equation in Ω is

h0(ξ, µ̃) = (cosh ξ − µ̃)1/2

∞∑
n=0

(
E(1)
n cosh n0ξ + F (1)

n sinh n0ξ
)Pn(µ̃). (B 2)

An application of boundary conditions (30) results in an infinite set of algebraic
equations for the coefficients in (B 1):

(n+ 1)(E(1)
n − E(1)

n+1) sinh n+ξ + n(E(1)
n − E(1)

n−1) sinh n−ξ

+(n+ 1)(F (1)
n − F (1)

n+1) cosh n+ξ + n(F (1)
n − F (1)

n−1) cosh n−ξ

= ∓2n0c

∫ +1

−1

f(ξ, τ)(cosh ξ − τ)−1/2Pn(τ) dτ, ξ = α,−β, (B 3)

where n0 = n+ 1/2, n± = n0 ± 1 and f is defined in (30).
The system (B 3) is solved as proposed by Meyyappan et al. (1983) by truncating

it at some large n = N and setting En = Fn = 0 for n > N.

Appendix C. Widely separated bubbles
Let (ri, θi, φ) be local spherical coordinate systems with their origins at the centres

of the bubbles and with the lines θi = 0 parallel to e3, and let eri , eθi , eφ be the
local basis vectors of these coordinate systems. By making use of the method of
reflections (Happel & Brenner 1965; Anderson 1985) the zero-order terms of the
inner expansions for h(0) and ψ(0) are found as

h(0) =

2∑
i=1

j 6=i

R3
i

2r2
i

(
1− R3

j

Z3

)
P1(µi) + (−1)j

R5
i R

3
j

r3
i Z

4
P2(µi) + O(Z−5), (C 1)

ψ(0) =

2∑
i=1

j 6=i

−R
4
i

2ri

(
1− R3

j

Z3

)
C−1/2

2 (µi)

+(−1)j
3R4

i R
3
j

2Z4

(
1− R2

i

r2
i

− Rj

Ri

)
C−1/2

3 (µi) + O(Z−5), (C 2)

where µi = cos θi.
The terms composing Ξ (x, t) in (23) are found from (C 1), (C 2) and (31). For the

first one we obtain

h
(0)
t =

2∑
i=1

j 6=i

(
∂h(0)

∂ri

∂ri

∂t
+
∂h(0)

∂µi

∂µi

∂t

)
+
∂h(0)

∂Z

dZ

dt
=

2∑
i=1

j 6=i

R4
i

2r3
i

(
1− R3

j

Z3

)
P2(µi)

+
R7
i

r3
i Z

3

(
Rj

Ri
− 1

)
( 4

3
P2(µi)− 1

3
) + O(Z−4), (C 3)

where the following equalities have been used:

∂ri

∂t
= −µiV (0)

i ,
∂µi

∂t
= − (1− µ2

i )

ri
V

(0)
i ,

dZ

dt
= V

(0)
1 − V (0)

2 . (C 4)
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The second term becomes

v
(0)
3 =

2∑
i=1

j 6=i

v(0)
ri

cos θi − v(0)
θi

sin θi =

2∑
i=1

R4
i

2r3
i

(
1− R3

j

Z3

)
P2(µi) + O(Z−4), (C 5)

and the last one is of the form

v(0) · ∇h(0) =

2∑
i=1

j 6=i

(
v(0)
ri

∂h(0)

∂ri
+
v

(0)
θi

ri

∂h(0)

∂θi

)
+

(
v(0)
ri

∂h(0)

∂rj
+
v

(0)
θi

rj

∂h(0)

∂θj

)
(eri , erj )

+

(
v

(0)
θi

∂h(0)

∂rj
+
v(0)
ri

rj

∂h(0)

∂θj

)
(eri , eθj ), (C 6)

where we made use of symmetry relations

(eri , erj ) = (eθi , eθj ), (eri , eθj ) = −(erj , eθi). (C 7)

The term in the first brackets in (C 6), using (C 1) and (C 2), becomes

v(0)
ri

∂h(0)

∂ri
+
v

(0)
θi

ri

∂h(0)

∂θi
= − (1 + 3µ2

i )R
7
i

8r6
i

+ O(Z−3), (C 8)

which is uniformly valid in Ω. The second and the third brackets contain the cross-
terms which are at least of O(Z−3) everywhere in Ω.

Combining these representations we can construct an O(1) solution to (23)–(25) as

h(1) = h
(1)
1 (r1, θ1) + h

(1)
2 (r2, θ2),

where

h
(1)
i =

R4
i

12ri
− R7

i

48r4
i

+

(
R6
i

9r3
i

− R4
i

6ri
− R7

i

24r4
i

)
P2(µi). (C 9)
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